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The goal of a practical facial animation retargeting system is to reproduce
the character of a source animation on a target face while providing room
for additional creative control by the animator. This article presents a novel
spacetime facial animation retargeting method for blendshape face mod-
els. Our approach starts from the basic principle that the source and target
movements should be similar. By interpreting movement as the derivative
of position with time, and adding suitable boundary conditions, we formu-
late the retargeting problem as a Poisson equation. Specified (e.g., neutral)
expressions at the beginning and end of the animation as well as any user-
specified constraints in the middle of the animation serve as boundary con-
ditions. In addition, a model-specific prior is constructed to represent the
plausible expression space of the target face during retargeting. A Bayesian
formulation is then employed to produce target animation that is consistent
with the source movements while satisfying the prior constraints. Since the
preservation of temporal derivatives is the primary goal of the optimiza-
tion, the retargeted motion preserves the rhythm and character of the source
movement and is free of temporal jitter. More importantly, our approach pro-
vides spacetime editing for the popular blendshape representation of facial
models, exhibiting smooth and controlled propagation of user edits across
surrounding frames.
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1. INTRODUCTION

Creating realistic facial animation is an important topic in computer
graphics with immediate applications in movies and computer an-
imations. As humans are apt to recognize subtle artifacts in facial
animations, it has never been easy to create realistic facial anima-
tion using keyframing even for skilled animators. Instead of relying
on manual keyframing, realistic animations increasingly use mo-
tion capture of human actors. This solves the problem of obtaining
realistic facial motion, but introduces the problem of retargeting the
motion to the desired facial model. The target facial model gener-
ally has differing proportions than the original actor, and frequently
is not even human. However, due to an anthropomorphic principle,
the target face must be human-like in order to convey acting to a
human audience. Recent movies such as King Kong and Avatar are
well-known examples of facial retargeting.

The goal of a practical facial animation retargeting system is
to: (1) consistently reproduce a source animation on a target face
while (2) providing room for additional editing by an animator.
The first goal has been the main subject of previous retarget-
ing approaches, and many successful results have been reported
[Sumner and Popovic 2004; Bickel et al. 2007; Weise et al. 2009].
In contrast, the second goal has been neglected, even though ad-
ditional editing is indispensable for professional-quality animation
[Havaldar 2006]. Although retargeting methods based on a blend-
shape model [Joshi et al. 2003; Chuang and Bregler 2005; Li et al.
2010] might be considered for the second goal, automatic retar-
geting results that have keyframes at every frame are very difficult
to edit. Motivated by these needs, we present a novel retargeting
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Fig. 1. Facial animations are faithfully retargeted to various models with a
different number of blendshapes using our method. The brown face model
is used with permission of Jason Osipa.

Fig. 2. Whereas previous approaches conducted retargeting independently
at every frame (a), movement matching transfers the temporal derivative of
source animation (b). N denotes a neutral pose face.

system that provides both consistent reproduction of source anima-
tion on a target face and efficient spacetime editing.

Our novel approach to facial animation retargeting starts from the
proposition that the movement of the source and target faces should
be similar. Defining movement as the time derivative of position and
matching movement between source and target face points leads to
a velocity domain boundary value problem. Unlike previous meth-
ods where retargeting is conducted independently at every frame
(Figure 2(a)), our approach of matching the velocity of the source
and target (Figure 2(b)) has obvious advantages. First, the influence
of additional modifications by the animator propagates smoothly
through surrounding frames, minimizing user interaction and in-
creasing productivity. Second, when constraints on expressiveness
are imposed (which is usually the case), least squares matching in
the velocity domain may preserve the overall movement better than
per-frame matching (Figure 3).

A target face-specific prior model is integrated into the move-
ment matching formulation as a constraint on expressiveness. By
applying Principal Component Analysis (PCA) to the existing
facial expressions of the target blendshape model, we build a prior
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Fig. 3. Least squares matching of derivatives transfers motion better than
per-frame matching when constraints are present. (a) y-position of a point
on the source face. (b) per-frame matching attempts to transfer the motion
exactly. When the target model cannot reproduce the desired motion (due to
a constrained weight range (hard constraint) or a prior (soft constraint)) the
transferred motion does not resemble the source. The shaded area indicates
the squared error in derivative between source and target. (c) the least-
squares objective prefers many small errors over a few large errors, thus
movement matching preserves the overall shape of the motion.

model that reflects the probability of the retargeted results being
in a plausible space of expressions for the target face. We use a
Maximum A Posteriori (MAP) formulation to produce an anima-
tion consistent with the source movement while satisfying the prior
imposed on the target model. Using this prior our formulation con-
structs a simple and efficient linear system to solve for blendshape
weights. We show that our velocity domain transfer works better
with the prior (or any other constraints) than per-frame transfer
does, leading to more temporally coherent and plausible results.

Our formulation specifically targets the popular blendshape pa-
rameterization of facial models. Blendshapes are a simple linear
combination of basis shapes, however, the basis is not orthogonal
since the individual shapes are constructed to have interpretable
roles such as “raise the right eyebrow.” While blendshapes resem-
ble PCA models in being a linear combination of basis vectors, the
individual eigenvectors in a PCA model generally lack any semantic
interpretation due to their orthogonality [Lewis and Anjyo 2010].
Thanks to their combination of direct geometric authoring and a
meaningful parameterization, the blendshape approach has been
the predominant choice for realistic computer graphics characters.

The movement matching criterion resembles various gradient
domain image and mesh editing techniques that involve a Poisson
equation (e.g., Pérez et al. [2003]), but the derivative here is with
respect to time rather than space and the solution is expressed in
terms of a blendshape model, leading to a different mathematical
formulation than in previous gradient domain approaches. The idea
of minimizing the difference in velocity has long been used for
smooth blending of different body motions [Lee et al. 2002; Kovar
and Gleicher 2003], and the literature on editing motion capture
includes a variety of approaches that are distantly related to ours as
they involve global optimization of temporal relationships.

Figure 4 illustrates the overall movement matching process.
Given a source animation, a target face with blendshapes, and
their correspondences, a source-target calibration step matches the
scale and proportion between the two (Section 3). Then, the source
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Fig. 4. The overall process of our retargeting method.

animation is retargeted to the target face based on movement match-
ing (Section 4) and the target-specific prior model (Section 5). The
spacetime editing capability of our method allows the animator to
freely modify the results at any frame, without affecting temporal
coherency (Section 6). Figure 1 shows examples of our results on
various models.

2. RELATED WORK

Facial modeling and animation have a rich history of research since
the pioneering work of Parke [1972]. In this section, we will review
only work related to facial animation retargeting. For complete
references on facial modeling and animation, see Parke and Waters
[1996] and Deng and Noh [2007].

2.1 Facial Animation Retargeting

There is a strong body of existing research on facial animation
retargeting. After initial work by Williams [1990], the use of sparse
correspondences and interpolation schemes [Bickel et al. 2007; Ma
et al. 2008] has been a popular choice to deform 3D facial geometry.
These approaches often assume that the source and target faces are
of the same shape or share the same mesh connectivity. The work by
Noh and Neumann [2001] and Sumner and Popovic [2004] found
dense correspondences between the source and target to transfer
either motion vectors or deformation gradients. These approaches
are more general in that transfer is possible across different mesh
structures. However, the lack of intuitive high-level editing makes
these techniques less suited for professional projects where editing
subsequent to the retargeting is required.

Another noteworthy approach to facial animation retargeting is
shape blending. These retargeting methods attempt to match high-
dimensional vectors of source motion as linear combinations of
a limited set of target shapes. The set of facial shapes can con-
sist of facial muscle actions [Ekman and Friesen 1977; Choe et al.
2001; Reveret and Essa 2001], user-defined blendshapes [Chuang
and Bregler 2002; Joshi et al. 2003; Pyun et al. 2003; Deng et al.
2006; Sagar and Grossman 2006], facial scan examples [Blanz and
Vetter 1999; Zhang et al. 2004; Vlasic et al. 2005; Weise et al.
2009], or generic blendshape models [Li et al. 2010]. In Sumner
et al. [2005], a shape blending approach was extended to the area
of nonlinear blending to generate various deformations. Recently,
Weise et al. [2009] presented a high-quality real-time facial pup-
petry and expression transfer system that employs person-specific
facial shapes extracted by PCA. Although these mathematically
extracted shapes recreated the source animation well, they are not
meaningful shapes for artist-driven editing.

Although the retargeting methods surveyed before have differ-
ent details, they share the common principle that retargeting is

conducted independently at every frame (Figure 2(a)). The retar-
geted facial animation may be reasonable, but there are several
drawbacks to this approach. In the presence of constraints on expres-
siveness the target motion may not resemble the source (Figure 3).
In addition, modifying the retargeted animation can be tedious. Our
movement matching method excels in these aspects.

2.2 Expressiveness of a Face Model

In practice, a blendshape model’s range of motion rarely matches
that of the source performance. While conventional blendshape
models cannot exactly match a performance due to the limitations
of manual sculpting, the mismatch between the model and the per-
formance occurs even with PCA models [Blanz and Vetter 1999;
Chuang and Bregler 2005; Weise et al. 2009] because the model
is typically built from a training performance that only approxi-
mately contains the character’s full range of movement. In these
cases blendshape-based transfer has been observed to fit the source
with large and mostly canceling positive and negative shape com-
binations, and applying the corresponding weights on the target
face results in poor retargeting [Chuang and Bregler 2002]. In or-
der to prevent these large extrapolations, methods such as Choe
et al. [2001], Chuang and Bregler [2002], and Bregler et al. [2002]
strictly constrain the blendshape weights to be in a certain range.
The incorporation of a learned facial prior [Blanz and Vetter 1999;
Lau et al. 2009] is a more general solution. Lau et al. [2009] mod-
eled a prior from face data as a mixture of factor analyzers and
used the prior for face editing. In many practical retargeting cases,
however, the target is a fantasy character such as an alien and the
facial scan data required to construct a target morphable model or
suitable prior is not available. In these cases, standard practice is
to use an artist-created blendshape model that spans the plausible
face space for the character. In our method, the existing blendshape
models are analyzed and used to estimate a plausible face space.

2.3 Animation Editing and Propagation

For corrections or adjustments on the retargeted animation, typi-
cally additional manual work by an animator is required. To make
this process easier, several methods have been introduced. Li and
Deng [2008] built an independent blendshape model for each fa-
cial region and propagated the influence from the user editing to
the entire face using a hierarchical model. Lewis and Anjyo [2010]
provided direct manipulation of vertices based on a blendshape
model and Zhang et al. [2004] performed a local and adaptive blend
of basis shapes. High-level editing such as emotion control was
shown in Cao et al. [2003] and Chuang and Bregler [2005]. In
contrast to the preceding work that considers editing in the spa-
tial domain, there is not much work that performs editing in the
temporal domain. Choe et al. [2001] fitted the discrepancy caused
by edits into a B-spline curve and composited it with the original
parameter curve. Li and Deng [2008] fitted and smoothly manipu-
lated a Catmull-Rom spline based on the weighted sequence. Both
methods are capable of generating smooth results. However, orig-
inal source characteristics are rarely preserved after the edits. Ma
et al. [2009] proposed a style learning method that applies learned
style to the similar frames in the sequence. While it is an effective
strategy, smooth propagation of edits is not considered. In contrast,
by design, our proposed movement matching seamlessly applies the
user modifications across the surrounding frames while preserving
the characteristics of the original source animation.

ACM Transactions on Graphics, Vol. 31, No. 2, Article 14, Publication date: April 2012.



14:4 • Y. Seol et al.

(a) (b)

Fig. 5. 54 corresponding markers are used for (a) mesh to mesh retargeting
and (b) motion capture to mesh retargeting.

3. PREPROCESSING

3.1 Data Acquisition

A source animation can be obtained from existing facial animation
or facial motion capture. We represent facial motion on a motion
capture sequence or facial animation using a pattern of n = 54
markers as shown in Figure 5. This choice of marker placement
is our standard workflow but other sensible possibilities would be
equally valid. During the facial motion capture, we recorded the
actor’s frontal face with a video camera for the final comparison.
The actor was asked to make a neutral expression at the beginning
and at the end of the capture. The neutral expressions become
boundary conditions for movement matching.

Normalization is performed on the acquired source animation
data. The head motion is estimated and stored for later resynthesis.
As in Deng et al. [2006], translation and rotation are adjusted using
Procrustes analysis. For each motion capture frame, n×3 matrix Xl

that contains xyz positions of markers is constructed. The matrix Y
for the neutral pose is also constructed. A Singular Value Decom-
position YT Xl = UlDlVT

l is used to determine the rotation matrix
Rl = VlUT

l .
A target model consists of a neutral face and a set of blendshape

targets. We have chosen arbitrary face models with differing num-
bers of blendshape basis vectors to demonstrate the generality of our
approach. The positions of n markers corresponding to the source
markers are manually identified on each target face.

3.2 Scale-Proportion Matching

Retargeting methods generally require that the source and target
faces have approximately similar scale and proportion. We deform
the marker positions on each target blendshape to the shape of the
source face. Similar to Bickel et al. [2007], Orvalho et al. [2008],
Radial Basis Functions (RBF) determine the warping

d(x) =
n∑

i=1

wiφ(x, ci) + q(x),

where x ∈ IR3 is the marker position on the neutral target face.
wi , ci ∈ IR3 are the weights and centers of the RBF (the centers
coincide with the correspondence points on the neutral target face).
For training, the points on the neutral source face are used for d(x).
A kernel function φ(x, ci) = ‖x−ci‖ minimizes the bending energy
of the deformation and q : IR3 → IR is a linear polynomial. By using
the correspondences on the neutral faces as constraints and solving
the resulting linear system, the weights wi and the coefficients of
q can be found. Because of the linear term q, the function d can
exactly reproduce affine motions.

Fig. 6. The corresponding markers on the blendshapes are deformed to
match the scale and proportion of the source face (blendshape models are
overlaid for the visualization purpose).

Now we deform the marker positions of each target blendshape
using the computed d. A set of n marker positions on m blendshapes
bi,j ∈ IR3, {i = 1, . . . , n}, {j = 1, . . . , m} are deformed to b∗

i,j

b∗
i,j = d(bi,j ),

b∗
i,j reflect the deformed marker positions of the target blendshapes

that approximate the shape of the source (Figure 6). The computed
b∗

i,j replace bi,j in the subsequent sections.

4. MOVEMENT MATCHING

This section describes how we use the movement matching prin-
ciple to compute blendshape weights for the target face from the
animation of source markers. A source and a target face can be
represented as

fsrc = nsrc + s,

ftgt = ntgt + t = ntgt + Bw, (1)

where fsrc and ftgt are the vectorized marker positions of size 3n for
the source and the target, respectively, arranged in xyz order. The
vectors nsrc and ntgt are neutral face shape vectors and the vectors
s and t represent deltas from neutrals. B is the 3n × m blendshape
matrix whose columns represent deltas of each blendshape from the
neutral position. w is the blendshape weight vector of size m. In the
following, nsrc and ntgt are ignored and assumed to be added back
in the end.

The source and the target animation sequences can be represented
as matrices Fsrc and Ftgt of size 3n × f whose columns represent
the positions of correspondences for each frame. W is an m × f
matrix containing the weights for each frame in its columns. Here,
f denotes the number of animation frames. Then, the source and
the target animations can be represented as

Fsrc = S

Ftgt = T = BW.

Unlike most previous work that assumes the per-frame positions
of the source and the target are similar, our method assumes that
their movements are similar. This can be expressed as DST ≈ DTT ,
or DST ≈ D(BW)T , where D is a derivative operator that works
on all the vertices at once. With known boundary conditions from
Section 3, our minimization becomes a Poisson problem

min
W

‖D(BW)T − DST ‖2
F , (2)

where F denotes the Frobenius norm. See the appendix for the de-
tailed derivation. The resulting target animation using W has similar
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movement to the source animation and is temporally coherent by
construction.

When the employed boundary values are identical to the val-
ues from the per-frame transfer without any constraint, the results
for both per-frame and velocity domain are the same. However,
the advantages of our movement matching become apparent when
the retargeting is constrained or user editing is required, which is
generally the case in practice. These advantages are described in
Sections 5 and 6.

5. MODEL-SPECIFIC PRIOR INFORMATION

As addressed in Bregler et al. [2002] and Chuang and Bregler
[2002], naively applying a blendshape model to a source animation
can produce very large positive and negative weights. Unwanted
extrapolations caused by large weight values lead to the following
problems.

(1) Artists typically create a blendshape model with the intended
weight range 0 ≤ wi ≤ 1 in mind. Weights that are much
outside this range correspond to expressions that lie outside the
valid range of poses for the model.

(2) Subsequent user modification becomes unintuitive and nontriv-
ial. Adjusting a blendshape model that is far out of its intended
range is a daunting task (note that typical professional models
have 50–100 or more basis shapes to explore).

Bregler et al. [2002] and Chuang and Bregler [2002] used Quadratic
Programming (QP) and the nonnegative least-squares method to
limit the range of weight values. Similarly, Pighin et al. [2002]
addressed this by using soft limits on the blendshape weights. How-
ever, simply restricting weight values to a certain range is somewhat
arbitrary and limits the expressiveness of the combined blendshapes,
sometimes failing to achieve consistent movement with the source
(Figure 3). We incorporate a model-specific prior to fix the prob-
lem. In the following, the formulation of a prior specifically for the
velocity domain will be detailed and its effect on retargeting quality
will be demonstrated.

Similar to Blanz and Vetter [1999] and Lau et al. [2009], we
formulate the probability of a new face being in the valid space of
blendshapes. Using this measure as a prior probability, we incorpo-
rate the least-squares optimization for the transfer task into a MAP
formulation giving the log posterior as sum of data likelihood and
prior terms. The prior model can be easily constructed using data
from either of the two sources. Arbitrary animations of the target
model can be a great source if they happen to be available. If not,
an “animation” whose j th frame is the j th blendshape basis shape
is used, since a quality blendshape model is by construction a good
parameterization of the space of face shapes.

Applying PCA to this data gives a new eigenvector basis ek and
corresponding eigenvalues λk . The model is then represented as

ftgt = Ev + t̄, (3)

where E is a 3n × h matrix with h eigenvectors with nonzero
eigenvalues in its columns. v is the PCA coefficient vector of the
model, and t̄ is the mean shape vector of the data.

We fit a multivariate normal distribution to our PCA data to
construct the prior model. The probability for a coefficient vector v
being a plausible target face is given by

p(v) ∼ exp

[
−1

2

h∑
k=1

(vk)2

λk

]
.

The cost function for the prior at a single frame can be expressed in
vector form as

Eprior = vT �−1v,

where �−1 is the inverse of diagonal matrix of eigenvalues.
The next step is to express the prior probability in terms of the

blendshape weight vector w instead of v, in order to solve it together
with movement matching. Note that any facial expression of the
target face that is expressed with a blendshape combination can
also be expressed via PCA eigenvectors. By equating Eq. (1) and
(3), we can solve for v in terms of w

v = ET (Bw + ntgt − t̄),

where ET E = I. Eq. (2) defines the matching cost between the
source and target. As a least-squares problem such as Eq. (2) can
be considered as resulting from a maximum likelihood formula-
tion [Hertzmann 2004], the addition of the prior model allows stan-
dard Bayesian approaches to be applied. The MAP formulation
minimizes the cost function

E = Ematch + α Eprior , (4)

where α is a weighting factor that regulates the contribution from
the prior probability to the matching quality. The particular form of
our prior also gives a natural interpretation to Eq. (4) as regulariz-
ing the least-squares solution with a function norm defined in the
reproducing kernel Hilbert space (RKHS) K derived from the data
covariance [Wahba 1990], that is, ‖f‖2

K = vT �−1v. The value of
α is empirically decided depending on the size of the faces. In our
tests, small α such as 0.01 (Figure 7(f)) worked well to account for
the prior model while a large α tends to overly constrain target ani-
mation as in Figure 7(e). The eyes do not close all the way because
of the strong prior.

In movement matching, the blendshape weight values are stored
in the matrix W of size m×f . In order to make a linear system that
reflects both the likelihood of matching and the model-specific prior,
we convert the matrix W into a vector of size mf , which is necessary
for W and the prior to be compatible and compactly represented in
a single equation. Vectorizing Eq. (2) can be achieved by utilizing
the Kronecker product (e.g., vec(AXB) = (BT ⊗ A)vec(X), where
vec(X) denotes the vectorization of the matrix X formed by stacking
the columns of X into a single column vector).

Ematch = ‖D(BW)T − DST ‖2
F = ‖BWDT − SDT ‖2

F

= ‖(D ⊗ B)vec(W) − (D ⊗ I)vec(S)‖2 (5)

Similarly, an expression for the prior over the entire range of f
frames can be denoted as Eprior = v̄T (If ⊗ �−1)v̄, where If is an
identity matrix of size f and v̄ is a vector of size mf containing
the coefficients for all frames. With these transformations, Eq. (4)
becomes a sparse linear system that can be solved for w.

Note that the prior is a positional constraint imposed at every
frame. Consequently, the prior implies a conflicting goal in a per-
frame position domain formulation suggesting a different movement
from the source as shown in Figure 8(a), which potentially causes
unnatural artifacts as shown in Figure 7(d). In contrast, the prior and
the velocity domain match work in harmony as the prior provides
boundary values for the velocity domain formulation to respect. As
a result, the movement of the source is reproduced faithfully in a
plausible expression space of the target face as shown in Figures 7(f)
and 8(b).
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Fig. 7. Retargeted facial expressions are shown with their blendshape weight distributions displayed on the graphs below. (a) A source expression (b)
retargeting with either per-frame or movement matching without weight constraints (c) per-frame retargeting with hard constraints −0.5 ≤ wi ≤ 1.5 on the
weights. (d) per-frame matching with prior α = 0.5 (e) prior in the velocity domain with α = 0.5 and (f) with α = 0.01. Retargeting without constraints
produces artifacts on the mouth and the forehead as the target face is contorted to follow the position of points that it cannot naturally reproduce. The restricted
weight range or prior with per-frame matching does not prevent artifacts properly. A small α with movement matching produces a nice weight distribution and
reflects the source well while prior with a large α overly restricts animation (the eyes are not closed). (g) An artist manually reproduced the source expression
on the target face. Both the expression and the weight distribution are similar to those of (f).
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Fig. 8. Comparison of the effects when the prior is applied differently.
While (a) the prior in the per-frame matching generates a different target
movement from the source movement (see the curve variation), (b) the prior
in the velocity domain reproduces the source movement faithfully with little
velocity error. The same α values from Figure 7(d) and (f) are used here.

6. SPACETIME EDITING FOR RETARGETING

As mentioned in Havaldar [2006], the results of facial retargeting
do not necessarily meet the requirements of the final animation even
if the retargeting algorithms are correct and the process is applied
as intended. They presented reasons for why this happens.

(a) The combination of artistically designed blendshapes cannot
perfectly match the actual actor’s motion.

(b) The proportions of CG face model and an actor’s face can be
significantly different.

(c) Motion capture marker placements differ from day to day.

(d) The desired performance is not what the actor performed. Either
the required expression is not present in the motion capture data
or it needs to be exaggerated.

In practice, an animator modifies the result by adjusting blendshape
weights. Although the modifications can be interpolated, realistic

animation requires placing keyframes as frequently as every three
to five frames [Luamanuvae 2010].

Our framework excels in this respect by providing the power-
ful spacetime editing. The movement matching allows the influ-
ence of any user-specified pose modification to be smoothly prop-
agated across neighboring frames while intelligently incorporating
the source movement data. After the initial movement matching
(Eq. (4)) is performed, the animator adjusts the target blendshape
weights at any selected frame as desired. The animator’s modi-
fications work as additional boundary conditions for the Poisson
problem. The animator can also specify a range of propagation, in
which case the values at the start and end frames from the original
solution (Eq. (4)) are also used as boundary conditions. Solving
the system with the new boundary conditions applies the correction
smoothly. By considering only the matrix elements that are within
the user-specified range, the results of modification can be easily
updated at real-time rates.

7. RESULTS

We performed a set of different blendshape-based retargeting tasks
to verify the validity of our method. Both existing animation
(Figure 15(a)) and motion capture (Figure 15(b)) were used as facial
animation sources. Three models were employed as target faces with
33, 50, and 18 blendshape targets, respectively. The position of 54
correspondences were identified between the source and the target.

Figure 9 shows retargeting results created by per-frame retar-
geting methods and our method when constraints are imposed. “No
Const”, (b), represents either per-frame or movement matching with
no constraints (i.e., minW ‖BW−S‖2

F ). “Range PF”, (c), represents
per-frame retargeting with the restricted weight range as in Bregler
et al. [2002] (hard constraint). The weight range −0.5 ≤ wi ≤ 1.5
is used for Range PF. “Prior PF”, (d), incorporates the PCA prior
from Section 5 with per-frame retargeting as in Blanz and Vetter
[1999] (soft constraint). To make the PCA prior, we employed all the
target blendshapes as training examples. The α for Prior PF and our
method was determined to produce the same weight range used for
Range PF (α = 0.5, α = 0.01, respectively). The results from our
method (e) closely recreated the source motion and look plausible
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Fig. 9. Blendshape-based facial animation retargeting results by per-frame
retargeting methods and our method when constraints are imposed. While
constrained per-frame matching methods, (c) and (d), produce less distor-
tion compared to (b), artifacts such as an improperly open mouth are not
prevented. The red arrows indicate noticeable artifacts. Our method (e) pro-
duces natural expressions in accord with the prior. See the accompanying
video for the entire animation sequence.

on the target face with less distortion than the results of the con-
strained per-frame matching methods. For instance, the per-frame
matching results at frame 222 reveal an incompletely closed mouth
and unpleasant distortions while our method effectively reproduces
the source shape for the same frame. Figure 10 shows additional
retargeting examples of source motion with extreme expressions.
The retargeting results fail to recreate exactly the same expressions
because of the absence of appropriate blendshapes. Nevertheless,
our method effectively avoids the type of overfitting artifacts that
appear in the results of per-frame transfers.

Figure 11 shows the amount of velocity error between the source
and target correspondences (i.e., ‖D(BW)T − DST ‖2

F ) compared to
that of retargeting without constraints (No Const). While the per-
frame matching methods (Range PF and Prior PF) produce large
additional errors when constraints are imposed, our method incurs
little additional errors, which leads to better reconstruction of the
source movements. This test verifies the illustrations in Figures 3
and 8.

Fig. 10. Retargeting results of source motion with extreme expressions by
different methods.

Most importantly, our method provides intelligent spacetime edit-
ing; the influences from user modifications are smoothly propa-
gated. Figure 12 shows an example of a spacetime editing. Suppose
a user wants to alter the shape of the lips and the left eye at frame 68
and limit the influence to the range from 63 to 74. Then, the weights
at the three frames (corrected frame 68, frame 63, and frame 74)
become new boundary conditions. By solving the linear system
within this range with the new constraints, the desired animation
can be efficiently obtained. See the accompanying video for the full
performance and an interactive editing scenario.

We performed a test to investigate the effect of the model-specific
prior when a different number of input expressions are used. In
Figure 13, (a) shows retargeting results when all blendshape targets
are used (same as other figures in the article). When only 20 mouth-
related blendshapes are used in (b), the artifact around the forehead
is not fixed as only the mouth region of the face is constrained.
Similarly, when only 11 eye-related blendshapes are used in (c),
only eye region is constrained in the results. The partial selection
of blendshapes for the prior as shown in (b) and (c) can achieve a
specific purpose in retargeting. (d) shows retargeting results when
10 additional highly expressive facial expressions are provided
together with all the blendshape targets for the prior. The expression
space of the prior model is expanded, but quality improvement was
not noticeable in most fames. This makes sense because the ex-
pression space of the target face remains the same, regardless of the
expanded expression space of the prior. This experiment supports
our choice of providing blendshapes as input shapes for the prior.

The results from our method and by a nonblendshape-based ap-
proach (i.e., deformation transfer [Sumner and Popovic 2004]) are
presented together for comparison in Figure 14. Our results are
comparable to those from deformation transfer, although their un-
derlying concepts are fundamentally different (and in fact are com-
plementary to each other). Our approach both retains the editing
advantages of the blendshape representation and supports the space-
time editing described earlier.

Along with facial expressions, the head motion of the source that
was calculated in Section 3.1 is directly applied to the target face.
Figure 15 shows retargeting results from various target models with
their head motion applied. Note that the eye movements are manu-
ally keyframed since the eyes are generally not part of a blendshape
model. The target face faithfully recreates the source animation.

The timing information for the test cases is as follows. All tests
were carried out on a standard PC with an Intel Xeon 2.8 GHz and
8GByte of memory. RBF training and interpolation (Section 3.2)
take milliseconds due to sparse correspondences. Movement
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Fig. 11. (a) Sum of velocity errors (i.e., ‖D(BW)T − DST ‖2
F ) of various methods. (b) Deltas of velocity errors from those of “No Const” along the time line.

While retargeting schemes based on per-frame matching (the dotted lines) generate bigger velocity errors when constraints are imposed, our method produces
little additional errors, which leads to better reconstruction of the source movements.

Fig. 12. Spacetime editing: the first row shows the initial retargeted animation and the second row shows the result after the modification. At frame 68, the
expression is changed and its influence is propagated across surrounding frames. Recalculating the weight values took less than a second.

Fig. 13. Retargeting results with a varying number of input shapes for the
model-specific prior. (a) all blendshapes, (b) 20 mouth-related blendshapes,
(c) 11 eye-related blendshapes, and (d) additional 10 highly expressive
expressions together with all blendshapes are used as input shapes of the
prior.

matching with the prior creates a sparse linear system that is solved
using Matlab. Table I presents the timing information correspond-
ing to different lengths of animations. While the computation does
take some time, retargeting is not required to be an interactive
process, and the times involved are small compared to other tasks

Fig. 14. Retargeting animation (a) by (b) deformation transfer and (c) our
method. Our results are comparable to those of deformation transfer while
retaining the editing advantages of blendshapes and spacetime editing.

such as rendering. As described in Section 6, edits to small ranges
of animation can be done at real-time rates (and a short range of ani-
mation is all that an animator can manually adjust in any case). Also
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Fig. 15. Retargeted animations with head motion. (a) mesh to mesh retargeting (b) motion capture to mesh retargeting. The first row shows the source
animation retargeted to different target models on the second, the third, and the fourth rows. Despite the large difference in proportion and the small number
of blendshapes (m = 18) used for the bug model, the retargeted results show reasonably good reconstruction of the source motion. The prior weight α = 0.01
is used for these examples.
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Table I. Timing for Different Sequences
# frames 10 50 100 500 1000 1500
Timing(sec.) 0.22 1.32 2.76 15.21 31.65 47.38

54 markers and 50 blendshapes were used.

note that sequences of longer than several hundred frames rarely
arise in practice, since most movie shots are only 3–5 seconds in
length.

7.1 Discussion

Although retargeting was successful with sparse marker correspon-
dences in our test cases, very complex face models may require
dense correspondences. Dense correspondences can be obtained by
applying cylindrical projection [Noh and Neumann 2001] or the
enhanced iterative closest point algorithms in Sumner and Popovic
[2004] and Li et al. [2008]. Applying parameterization schemes
such as Levy et al. [2002] or Kraevoy et al. [2003] is also a viable
possibility. A large-size linear system will result from dense cor-
respondences. We note that multigrid schemes have successfully
accelerated other Poisson problems and it may be possible to de-
vise a multigrid scheme for this problem. Also, however, it is not
clear if dense correspondences are truly necessary to produce re-
alistic facial animation; in fact current industry practice indicates
otherwise, since most major performance animated films have used
sparse motion capture markers (The Matrix sequels are an excep-
tion [Borshukov et al. 2003]).

Although movement matching reproduces the movement of the
source faithfully, it is not the only consideration in practical anima-
tion retargeting. Ensuring that the mouth or eyelids are fully closed
at specific frames is a standard requirement. In this case, minimizing
a Sobolev norm involving the position as well as the velocity can be a
valid alternative (i.e., minW ‖D(BW)T −DST ‖2

F +β‖BW−S‖2
F ). A

weighted Sobolev blending that only incorporates specific vertices
at specific frames can provide more direct control over the results.
For example, by applying higher weights β around the mouth re-
gion than the other regions on the face, the least-squares method
will concentrate on the retargeting around the mouth region. With a
simple user interface that allows easy specification of the vertices,
more specific and direct control may be possible.

Our formulation utilizes whole face blendshapes. Although our
method produces faithful retargeting in general, large differences
in proportion between a source and a target model or using a lim-
ited number of blendshape may bring difficulty in reproducing the
source motion correctly. An obvious alternative would be a weight
transfer scheme using localized blending approach such as Joshi
et al. [2003] or faceIK [Zhang et al. 2004]. Due to the local blend
weight matching, a smaller set of blendshape may produce compa-
rable results. In order to produce a retargeted animation, Eq. (4) has
to be solved for every segment or region with correspondences.

8. CONCLUSIONS AND FUTURE WORK

An increasing number of recent movies are founded on transferring
facial motion from a human actor to a computer graphic model. This
article presents a novel solution to this problem based on the obvi-
ous principle of movement matching together with a model-specific
prior. The movement matching principle leads directly to a velocity
domain formulation (Poisson boundary value problem) with
boundary conditions imposed at the start and/or end of the facial
performance as well as at any frames where pose modifications are
specified by the user. By introducing a simple prior on the plausible

space of target face poses, we formulate the motion transfer in a
MAP framework and solve for the entire motion simultaneously.

In this approach, the potential artifacts of solving for every frame
independently are avoided and temporal coherence is guaranteed.
While movement matching would be identical to per-frame match-
ing if the source and target shapes are perfectly calibrated so that
additional constraints are not required, this is rarely or never the
case. When the target face cannot exactly match the source shape,
it is arguably better to match movement in a least-squares sense
constrained to the expression space of the target than to strive to
match per-frame displacement and fail in a time-varying manner.

Most importantly, spacetime editing is naturally incorporated in
our system. The artist uses ordinary blendshape editing on the facial
pose, but instead of applying the modification with simple spline
interpolation, the modification is intelligently propagated while re-
specting the original captured movement. In this respect, our ap-
proach resembles the powerful gradient domain editing approaches
that have been introduced in other areas (e.g., Pérez et al. [2003]),
although our mathematical formulation is necessarily different due
to the need to drive standard blendshape models.

In this work, we concentrated on large-scale facial deformation
only. The importance of dynamic small-scale detail such as wrinkles
for realistic facial animation has recently been recognized [Bickel
et al. 2007; Ma et al. 2008; Beeler et al. 2011]. Developing retar-
geting techniques that take full advantage of such small-scale data
is our future research direction in order to take the quality of facial
animation up a notch. Finally, it would be interesting to apply our
framework to various animation retargeting tasks other than facial
retargeting.

APPENDIX: Movement Matching Minimization

In Section 4, D is a derivative matrix which is applied to a vector of
values over time. This subtracts the previous value from the current
one, that is, it is the backwards first finite difference.

D =

⎡
⎢⎢⎢⎣

−1 1
−1 1

−1 1
. . .
−1 1

⎤
⎥⎥⎥⎦

Because several rows of WT are known from the boundary con-
straints, D(BW)T − DST in Eq. (2) can be reordered so that the
known elements of WT appear in the bottom of the matrix. This can
be written as a block matrix system[

D1 D3

D2 D4

] [
WT

1
WT

2

]
BT − DST ,

where WT
2 contains the known boundary rows of WT . Separating

the known parts gives[
D1WT

1 + D3WT
2

D2WT
1 + D4WT

2

]
BT − DST

=
[

D1

D2

]
WT

1 BT −
(

DST −
[

D3

D4

]
WT

2 BT

)
.

We can write

M =
[

D1

D2

]
, XT = WT

1

R =
(

DST −
[

D3

D4

]
WT

2 BT

)
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then Eq. (2) becomes

min
X

‖M(BX)T − R‖2
F

which is equivalent to

min
X

tr(M(BX)T − R)T (M(BX)T − R).

Note that ‖K‖2
F = tr(KT K). Expanding this equation gives

min
X

tr(BXLXT BT − BXMT R − RT MXT BT + RT R),

where L = MT M is a discrete invertible Laplacian matrix. Taking
the derivative with respect to X gives

LXT BT B = MT RB

LXT = MT RB(BT B)−1

which is a linear system that can be solved for X.
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